The Fusarium wilt resistance locus Fom-2 of melon contains a single resistance gene with complex features.

نویسندگان

  • Tarek Joobeur
  • Joseph J King
  • Shelly J Nolin
  • Claude E Thomas
  • Ralph A Dean
چکیده

The soil-borne fungus Fusarium oxysporum f.sp. melonis causes significant losses in the cultivated melon, a key member of the economically important family, the Cucurbitaceae. Here, we report the map-based cloning and characterization of the resistance gene Fom-2 that confers resistance to race 0 and 1 of this plant pathogen. Two recombination events, 75 kb apart, were found to bracket Fom-2 after screening approximately 1324 gametes with PCR-based markers. Sequence analysis of the Fom-2 interval revealed the presence of two candidate genes. One candidate gene showed significant similarity to previously characterized resistance genes. Sequence analysis of this gene revealed clear polymorphisms between resistant and susceptible materials and was therefore designated as Fom-2. Analysis of susceptible breeding lines (BL) presenting a haplotype very similar to the resistant cultivar MR-1 indicated that a gene conversion had occurred in Fom-2, resulting in a significant rearrangement of this gene. The second candidate gene which shared high similarity to an essential gene in Arabidopsis, presented an almost identical sequence in MR-1 and BL, further supporting Fom-2 identity. The gene conversion in Fom-2 produced a truncated R gene, revealing new insights into R gene evolution. Fom-2 was predicted to encode an NBS-LRR type R protein of the non-TIR subfamily. In contrast to most members of this class a coiled-coil structure was predicted within the LRR region rather than in the N-terminal. The Fom-2 physical region contained retroelement-like sequences and truncated genes, suggesting that this locus is complex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SNP Marker Assisted Selection for Identification of Fusarium Resistant Melon Plants

Melon is an important crop cultivated in moderate climate regions of the world. One of the most important diseases of this plant is vascular wilt caused by Fusarium oxysporum f.sp. melonis (Fom). Infection of farm by this pathogen can result in huge damage around the world. Development of resistant varieties is the most effective method for disease control. Four races of 0, 1, 2 and 1,2 have be...

متن کامل

Characterization of Fusarium race 1.2 resistance in melon and mapping of a major QTL for this trait near a fruit netting locus

An Israeli breeding line, BIZ, resistant to all four races of Fusarium oxysporum f.sp. melonis (FOM), has been characterized regarding its response to FOM race 1.2. The infection process of a FOM 1.2 strain that expresses the GFP reporter protein was monitored, suggesting the timing and sites in which fungal progression differs between a resistant and a susceptible genotype. A mapping populatio...

متن کامل

Screening some Iranian Muskmelon Landraces for Resistance Against Fusarium Wilt Disease using Molecular Markers

Fusarium wilt is one of the most destructive diseases of muskmelon (Cucumis melo L.), which is an economically important disease worldwide causes yield losses in muskmelon growing areas. One of the most effective controlling measures to prevent Fusarium wilt is through host resistance by using resistance genes. We used developed molecular markers for Fom-2 gene, which confers ...

متن کامل

Melon bacterial artificial chromosome (BAC) library construction using improved methods and identification of clones linked to the locus conferring resistance to melon Fusarium wilt (Fom-2).

Utilizing improved methods, two bacterial artificial chromosome (BAC) libraries were constructed for the multidisease-resistant line of melon MR-1. The HindIII library consists of 177 microtiter plates in a 384-well format, while the EcoRI library consists of 222 microtiter plates. Approximately 95.6% of the HindIII library clones contain nuclear DNA inserts with an average size of 118 kb, prov...

متن کامل

The I2C family from the wilt disease resistance locus I2 belongs to the nucleotide binding, leucine-rich repeat superfamily of plant resistance genes.

Characterization of plant resistance genes is an important step in understanding plant defense mechanisms. Fusarium oxysporum f sp lycopersici is the causal agent of a vascular wilt disease in tomato. Genes conferring resistance to plant vascular diseases have yet to be described molecularly. Members of a new multigene family, complex I2C, were isolated by map-based cloning from the I2 F. o. ly...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant journal : for cell and molecular biology

دوره 39 3  شماره 

صفحات  -

تاریخ انتشار 2004